adaptive-vision.com

Zebra
Aurora Vision

Aurora Vvision Library 5.6

Getting Started

Created: 9/25/2025

Product version: 5.6.1.79554

Table of content:

e SDK Installation

e Project Configuration

e Using Library with cMake

e Using User Filters on Linux

https://www.adaptive-vision.com

This is just a placeholder to silence warnings about broken T1ink.

SDK Installation

Requirements

Aurora Vision Library is designed to be a part of applications working under control of the Microsoft
windows operating system. Supported versions are: 10 and 11, as well as the corresponding embedded

editions.

To build an application using Aurora Vision Library, Microsoft visual Studio environment is required.
Supported versions are: 2015, 2017 and 2019.

Aurora Vision Library can be also used on Linux operating system with GCC compiler - for details consult

Using SDK on Linux article.

Running the Installer

The installation process 1is required to copy the files to the proper folders and to set the environment
variables used for building applications using Aurora Vision Library.

After the installation, a Ticense for Aurora Vvision Library product has to be Toaded. It can be done with
the L7cense Manager tool available in the Start menu.

To verify that the installation has been successful and the Ticense works correctly, one can try to load,
build and run example programs, which are available from the Start menu.

SDK Directories

Aurora Vision Library is distributed as a set of header files (.h), dynamic (.d11) and static (.1ib)
Tibraries. The Tibraries (static and dynamic) are provided in versions for 32-bit and 64-bit system. The
header files are common for both versions.

The picture below shows the structure of the directories containing headers and Tlibraries included in

Aurora Vision Library.

A Adaptive Vision Library 4,10
atl_visualizers
v bin
Win32
xbd
Documentation
include
v lib
Win32
xbd

tools

Library Architecture

Aurora Vision Library is split into

The directories (installed in the Program Files system folder) being a
part of Aurora Vvision Library are shortly described below.

atl_visualizers - a directory containing the visualizers for
Microsoft visual Studio Debugger of Aurora vision Library data types.

bin - a directory containing dynamic linked library files (AvL.d11)
for 32|64-bit applications. The libraries are common for all
supported versions of Microsoft visual Studio and for Debug|Release
configurations. A1l the functions of Aurora Vvision Library are
included in the AvL.d11 file.

Documentation - a directory containing the documentation of Aurora
vision Library, including this document.

include - a directory containing all header (.h) files for Aurora
vision Library. Every source code file that uses Aurora Vision
g1bqa5ydneeds the AVL.h header file (the main header file) to be
included.

T1ib - a directory containing static (.1ib) libraries (AvL.1ib) for
32|64-bit applications. The AvL.1ib file has to be statically-Tinked
into the program that uses Aurora Vision Library. It acts as an
intermediary between the usage of Aurora Vvision Library functions and
the AvL.d11 file. The programmer creating an application does not
need to bother about DLL entry points and functions exported from the
AVL.d11 file. Aurora Vvision Library is designed to be easy to use, so
one only needs to 1link the AvL.T1ib file and can use all the functions
from the AVL.d11 just as easy as local functions.

tools - a directory containing the License Manager tool helping the
user to load the Ticense for Aurora Vision Library to the developer's
computer.

Vvision Library. The examples are a good way of learning, how to use
Aurora Vision Library. They can be used as a base for more
complicated programs as well. The shortcut to the Examples directory
can be found in the Start Menu after the installation of Aurora
vision Library.

four parts:

https://docs.adaptive-vision.com/5.6/avl/getting_started/LibraryOnLinux.html

1. Aurora Vision Library - contains all functions for working with images.

2. Standard Library - contains all auxiliary functions 1like: file operations, XML editing or mathematical
operations.

3. GenICam Library - contains all GenICam and GigEvision functions.
4. Third Party Library - contains functions of third-party hardware producers.

The usage of the Tibrary 1is possible only when including one of the following header files:

e AVL.h

e STD.h

e Genicam.h

e ThirdPartysdk.h

Environment and Paths

LAY TR T a1
P

Aurora Vision Library uses the environment variable named AVL_PATH5_6 (5_6 stands for the 5.6 version) in

............... el

the building process. The variable points the directory with the headers and libraries needed in the
compile time (.h files and AvL.1ib) and in the run time (AvL.d11). Its value is typically set to

A TR T 1
P

The projects using Aurora Vision Library should use the value of AVL_PATH5_6 to resolve the locations of

............... a

A TR T 1
P

the application source code more portable between computers. The :AVL_PATH5_6; path is typically used in the
project settings of the compiler (Configuration Properties | C/C++ | General | Additional Include
Directories) to find the header files, settings of the linker (Configuration Properties | Linker | General
| Additional Library Directories) to find the proper version of the AVL.1ib and in the configuration of
Post-Build Event (Configuration Properties | Build Events | Post-Build Event | Command Line) to copy the
proper version of the AvVL.d11 file to the output directory of the project. All the settings can be viewed

in the simple example applications distributed with Aurora Vvision Library.

Project Configuration

General Information

Aurora Vision Library is designed to be used as a part of C++ projects developed with Microsoft Vvisual
Studio in versions 2015-2019.

Creating a New Project
Microsoft Visual Studio 2015, 2017 and 2019

Aurora Vision Library is provided with a project template. To create a new project using Aurora Vision
Library, start Microsoft visual Studio and choose the File /| New | Project... command. The template called
AVL 5.6 Project is available in the tab Installed | Templates | Other Languages | Visual C++.

Required Project Settings

A1l projects that use Aurora Vision Library need some specific values of the compiler and linker settings.
If you want to use the Library in your existing project or you are manually configuring a new project,
please apply the settings listed below:

e Configuration Properties | General

.................................... 4
'

o Character Set should be set to Use Unicode Character Set

.................................... =l

e Configuration Properties | C/C++
o General

s Additional Include Directories should contain the $(AVL_PATH5_6)\incTude\ path.
e configuration Properties | Linker
o General

e Configuration Properties | Build Events
o Post-Build Event

to the AVL.h file is set in the settings of the compiler (described above), so there is no need to use the
full path in the directive.

Distributing Aurora vision Library with Your Application

once the application is ready, it is time for preparing a distribution package or an installer. There are
two requirements that needs to be fulfilled:

e The final executable file of the application needs to have access to the proper version (used by win32
or x64 configuration) of the AvL.dl1 file. Typically, the AvL.d11 file should be placed in the same
directory as the executable.

o The computer that the application will run on needs a valid license for the use of Aurora Vision
Library product. Licenses can be managed with the License Manager application, that is installed with
Aurora Vision Library Runtime package.

e A license file (*.avkey) can be also manually copied to the end user's machine without installing

separate license file.
e Alternatively to the (*.avkey) files we support USB Dongle Ticenses.

Using Library with CMake

Library ships with CMake configuration modules. It makes the project portable, and easy to compile for
windows, Tinux or Android. The minimum CMake version supported is 3.10 (for example shipped with Ubuntu
bionic/18.04)

Quick Start

A simple template for CMakeLists.txt is presented below:

cmake_minimum_required(VERSION 3.10)
project(example)

find_package(
AVL
for a specific version, uncomment the 1line below
#5.3
CONFIG
REQUIRED
)

copy binaries to build directory
copy_avl(Q

add_executable(
executable name
example_exec
source files
main.cpp

)

target_link_Tibraries(
example_exec
PUBLIC
AVL

)

install user executable
install(TARGETS example_exec)
install ALL AVL libraries
install_avl()

one can also copy one of the CMake examples, and modify to your needs. For further cmake use refer to
online documentation. Be aware that ubuntu 18.04 is the baseline distribution, so minimal CMake version is
3.10

Reference
package

CMake package is provided for windows installer and linux archive. Both should be usable after
installation. Linux additionally ships with Android libraries. The library is only discoverable using
CONFIG mode, so it's sensible to restrict find_package to that mode.

find_package(
AVL
for a specific version, uncomment the 1line below
#5.3
CONFIG
REQUIRED

on Android to use system installed AVL it is necessary to add CMAKE_FIND_ROOT_PATH_BOTH argument:
find_package(AVL CONFIG REQUIRED CMAKE_FIND_ROOT_PATH_BOTH)

Possible packages:

e AVL - full library
e AVL_Lite - 1ite library
o Weaver - deep learning inference library

https://cmake.org/documentation/

install_avl

Install all AvL Tibraries when executing make install or ninja install or building INSTALL project in
Visual Studio. It accepts a LIB argument to override default installation directory. It requires
find_package(AvL...) call first.

find_package (AVL CONFIG REQUIRED)

install_avl()

By default it installs to ${CMAKE_INSTALL_PREFIX}/bin on windows and ${CMAKE_INSTALL_PREFIX}/1ib on Linux.
when provided the LIB argument it installs to ${CMAKE_INSTALL_PREFIX}/${LIB_ARGUMENT}

install_avl(LIB "avl_directory")

Possible variants:

e« install_avl(Q)
e install_avli_1lite()

s install_weaver(Q)
copy_avl

Copy all AVL Tibraries when compiling targets that depend on AVL to binary directory. By default it's
${CMAKE_BINARY_DIR} or ${CMAKE_BINARY_DIR}/$<CONFIG> on Windows. It requires find_package(AvL...) call
first.

find_package (AVL CONFIG REQUIRED)

copy_avl(Q)

Possible variants:

e copy_avl(Q
e copy_avl_1liteQ
e copy_weaver()

Using Library on Linux

Requirements

Aurora Vision Library is designed to be used with GCC compiler on Linux x86_64 and embedded ARMv8-A
systems. Currently gcc in version 9.3.1 is supported, and corresponding toolchains for embedded Tinux:
arm-Tinux-gnueabihf-, aarch64-1inux-gnu-. Custom build can be prepared upon the earlier contact with
Aurora Vision team. The Aurora Vvision Library is distributed as .tar.gz or .tar.xz archive. The Tibrary is
compatible with Debian-1ike system, including - but not limited to - Ubuntu distributions.

Common prerequisites

Properly set Tocale on target computer is important. Non-existing Tocale will cause bugs and bad behavior.

running your application as daemon (e.g. from systemd) may set different locale, than the one in your user
terminal. Refer to your Linux distribution documentation.

To build example in simple manner, GNU Make tool and CMake is needed.

e Ubuntu 20.04/Debian 11 or newer:

o Runtime:
= package 1ibc6 > 2.31
= package Tibudevl > 245.4

o Development:
= package g++ version > 9.4.0
= package make version > 4.2.1
= package cmake version > 3.16.3
= 'sudo apt-get install cmake make g++

= For UserFilter example, you will need avexecutor
e Rocky Linux 9/Fedora 31 (36 for QT)/OpenSUSE 15.3 or newer:
o Runtime:
= package glibc > 2.30
= package systemd > 243.9
o Development:
= package gcc-c++ version > 9.3.1
= package make version > 4.2.1
= package cmake version > 3.17.4

... o
'

= OpensSUSE: izypper install 1ibsbL2-devel 1ibqt5-qtbase-devel gtk3-deveT:
e Generic:
o Runtime:

= Tibraries 1libc.so0.6, libpthread.so.0, libm.so.6, 1ibdl.so.2, Tibrt.so.1, libgcc_s.so.1l from
glibc version > 2.30 or compatible (i.e. musl Tibc)

= library 1libudev.so.l from systemd version > 243.9

Supported input devices

Vendor x86_64 armv8
ximea 0 0
Allied vision vimba 0 O
Basler Pylon 0 O
LMI Gocator 0 o
AXIS 0 0
GenicamGenTL 0 0
Hilscher 0 0
OPCUA 1]]
SerialPort 0 0
NET SynView 0]
Z4Sight 0 0
eBUS 0 a

Installation instructions

In unpacked directory call the install script. In example: sudo ./installl This command will install the

Tibrary to a proper directory in opt. It will also make the Tlibrary visible to CMake find_package command.

Compilation instructions

Directory structure
Unpacked directory consists of following entries:

o examples/ - directory contains source files of example programs written with Aurora Vision Library
e include/ - this directory contains library header files

e Tib/ - here the .so file with Tibrary is stored, along with any kits

e bin/ - directory for additional binaries, 1ike Licensing tool.

e /README - instruction of 1library usage

e /metadata.json - file containing information about the optimal target system, and Tibrary version
e /install - dinstallation script
e /uninstall - uninstall script, will be copied to installation directory, where it can be safely used
Compilation
Using CMake
CMake is the recommended way to compile on Tlinux, see documentation Using Library with cCMmake
Using Makefile or your custom build system
For compiling with Aurora vision Library please remember to:

e add the include/ subdirectory to the compiler include directories: -I switch

e add the 1ib/ subdirectory to the linker directories: -L switch

e 1link with Aurora Vvision Library: -1AVL

e use -rpath in Tinker options, LD_LIBRARY_PATH or LD_PRELOAD of 1ibAvL.so file.
e Tink with dependencies: -1pthread -1rt -1d1

one can consult makefile in the examples/ directory to see how to compile and 1link with Aurora Vvision
Library.

Known compilation bugs

In case of the following linker errors: (or similar)

https://docs.adaptive-vision.com/5.6/avl/getting_started/CMake.html

/usr/bin/1d: warning: Tibiconv.so, needed by 1ib/TibAvL.so, not found (try using -rpath or -rpath-1ink)
T1ib/1ibAvL.so: undefined reference to “libiconv'

1ib/build/1ibAvVL.so: undefined reference to "1libiconv_close'

1ib/build/1ibAVL.so: undefined reference to “1libiconv_open'

It is a known gnu Tinker bug, affecting versions older than 2.28 (e.g. in Ubuntu 16.04).
To solve the problem you can:

e Try a different Tinker (add for 1linking -fuse-l1d=gold for gold or -fuse-1d=11d, consult your Tinux
distribution manual)

e Link with the missing 1library (for example add -Ticonv)
e Update the Tinker (binutils 2.28 or newer)

Licensing and distribution

Licensing

File based licenses are supported on all Linux platforms. Dongle Ticenses depend on CodeMeter runtime.
Currently Codemeter runtime is available for x86_64 and ARMV7-A. To develop and debug programs written
with Aurora Vvision Library, Library license has to be present. To run compiled binaries Tinked with Aurora
vision Library, LibraryRuntime Ticense has to be present.

One can use Ticense_manager from bin/ directory to 1list currently installed file or dongle Ticenses:
Red marked Ticenses are invalid, for example past the license date or installed license for the wrong
machine (bad ID)

File License
To obtain license:

e In a terminal, on the target machine run Ticense_manager id from bin/ directory

e Copy the printed Computer ID

e Use that Computer ID to get a .avkey file from User Area on www.adaptive-vision.com website.
e Download the key to the target machine

e Install the license by one of the following methods:

o Run in terminal Ticense_manager install downToaded_file.avkey: (Recommended)

'
[R At o o MR B bbb~ e Phageibeffcd oy

o Copy the .avkey file next to executable, that is using Aurora Vision Library
Dongle License
Installed CodeMeter Runtime is required, as well as proper license available on plugged in dongle.

pownload runtime package from WIBU website, section "CodeMeter User Runtime for Linux".
"Driver only" (lite) version recommended for headless (no desktop GUI) installations. ARMV7-A is available
under "CodeMeter User Additional Downloads" as "Raspberry PI" version

Distribution

To distribute program with Aurora Vvision Library, one have to provide license (file or dongle - depending
on system used) and the Tibavl.so. To provide the .so file, one can install SDK on target machine, but
this will provide headers etc., which may be unwanted. In such case, the library file, with any used kits
should be copied to suitable system directory, or the program has to be compiled with -rpath and relative
path to the .so file. Third option is to provide a boot script, which will set LD_LIBRARY_PATH or
LD_PRELOAD with Tibavl.so Tlocation.

Program development - general advise

The most convenient way to make programs with Aurora Vvision Library for Linux is to develop vision
algorithm using Aurora vision Studio on Windows and then generating C++ code. This code can be further
changed or interfaced with rest of the system and tested on windows. Then, cross-compiler can be used to
prepare Linux build, which will be provided to target machine. It is easy to organize work this way,
because:

» developing vision algorithm using plain C++ is hard, troublesome and error prone, but Aurora Vision
Studio makes it easy,

e programs written with Aurora vision Library on windows can be easily debugged using Microsoft visual
Studio thanks to provided debug visualizers and the Image wWatch extensions to Microsoft visual Studio,

» cross compilation using virtualization solution, Tike vagrant, is easy and fast, and does not force
developer to use two systems simultaneously.

of course, the programs can be also developed on Linux machine directly. Then a dose of work should be put
into writing good Makefile. Debugging can be done by GDB, but we do not provide debug symbols for Aurora

https://www.wibu.com/support/user/downloads-user-software.html

Vision Library.

Runtime considerations

Some architectures might impose restrictions on libavl code. In this section we present pitfalls the user
should be aware of.

Homogeneous Multiprocessor/SMP

There are many identical cores. One might have a problem when cores span across multiple physical CPuUs,
frequent on servers. The CPU's don't share CPU cache, so when execution of thread from CPUx/COREa is moved
to CPUy/COREb, cache needs to be updated. It imposes time penalty. A workaround would be to pin threads to
specific cores, (set affinity) or 1imit execution of Tibavl to specific number of cores on one physical
CPU.

e use taskset 1inux command to Timit execution on specific cores
e use OMP_PROC_BIND=TRUE environment variable to bind threads to cores they started on

Heterogeneous Multiprocessor

There are different kinds of processors the code runs on. Some examples are ARM big.LITTLE architecture,
(where the cores mainly differ in maximum speed), or Tegra TX2 (where the cores serve different purpose).
This kind of architecture might also suffer from Homogeneous Multiprocessor problems, but might suffer
from different set of problems. One have to consider the cores are designed for Tow power and high
performance, single threaded multithreaded optimized. Use the same solutions as in previous point, just
take into account what type of algorithm will be executed.

Tegra TX2

This CPU is an example of Heterogeneous Multiprocessor architecture. It comprises of 6 cores: 2 Denver2 4
cortex-A57. Denver2 core is designed for single thread performance, while Cortex-A57 for multithreaded.
one can use both, but with thread binding, so threads are executed on the cores they started on. Limiting
to one type of core might be beneficial when power consumption is a factor. Remember that thread binding
might bind your application to core you did not want to use. Core 0 is Cortex-A57, core 1 and 2: Denverz2,
and cores 3-5: Cortex-A57. Core 0 is always active.

Using User Filters on Linux

Creating Studio project

First you should create Aurora Vision Studio project and add new User Filter library on windows. Refer to
Creating User Filters Studio article for details.

Implement and build your User Filter. Then in Aurora Vvision Studio add it to program and use it as needed.
Note that path to the User Filter should be relative to the project.

Building User Filter on Linux

on Linux install avexecutor. Copy source code of your User Filter to Linux. To build it using gcc, you
will need to:

e add the avexecutor's include/ subdirectory to the compiler include directories: -I switch

e add the avexecutor's 1ib/x86_64-1inux-gnu/ subdirectory to the linker directories: -L switch

e 1link with Aurora Vvision Library Lite and UserFilters: -1AVL_Lite -lUserFilters

e signify we are building a shared library: -shared -fPIC

e set output name to .so: -o user_filter_library.so

Loading User Filter Tlibrary from Studio program

Copy Studio project files to Linux. Put built .so User Filter Tibrary in directory relative to project
files. Make sure the file name of User Filter selected on Windows (e.g. user_filter_library.d11) matches
name of .so file. The file extension will be changed automatically by Console application.

Then the program can be started as usual: <path to Console application> <path to .avproj file>

Using AVL instead of AVL Lite

User Filter can alternatively be built using full AVL library. The process described above will need to be
changed as follows:

e point compiler also to include and 1ib directories of AvL

e 1ink with AVL instead of AVL_Lite: -TAVL

e copy libAvL.so from AVL directory to avexecutor/1ib/x86_64-1inux-gnu/ directory

e change #include to <AVL.h>

¢ remember to modify Vvisual Sstudio solution on windows in a similar manner

Zebra
Aurora Vision

This article is valid for version 5.6.1

©2007-2025 Aurora Vision

https://docs.adaptive-vision.com/studio/extensibility/CreatingUserFilters.html
https://www.adaptive-vision.com/

	Aurora Vision Library 5.6
	Getting Started
	SDK Installation
	Requirements
	Running the Installer
	SDK Directories
	Library Architecture
	Environment and Paths
	Project Configuration
	General Information
	Creating a New Project
	Microsoft Visual Studio 2015, 2017 and 2019
	Required Project Settings
	Including Headers
	Distributing Aurora Vision Library with Your Application
	Using Library with CMake
	Quick Start
	Reference
	package
	install_avl
	copy_avl
	Using Library on Linux
	Requirements
	Common prerequisites
	Supported input devices
	Installation instructions
	Compilation instructions
	Directory structure
	Compilation
	Using CMake
	Using Makefile or your custom build system
	Known compilation bugs
	Licensing and distribution
	Licensing
	File License
	Dongle License
	Distribution
	Program development - general advise
	Runtime considerations
	Homogeneous Multiprocessor/SMP
	Heterogeneous Multiprocessor
	Tegra TX2
	Using User Filters on Linux
	Creating Studio project
	Building User Filter on Linux
	Loading User Filter library from Studio program
	Using AVL instead of AVL Lite

