
Aurora Vision Library Aurora Vision Library 55.6.6

Getting StartedGetting Started

Created: 9/25/2025

Product version: 5.6.1.79554

adaptive-vision.com

Table of content:

SDK Installation

Project Configuration

Using Library with CMake

Using User Filters on Linux

https://www.adaptive-vision.com

This is just a placeholder to silence warnings about broken link.

SDK InstallationSDK Installation

RequirementsRequirements

Aurora Vision Library is designed to be a part of applications working under control of the Microsoft
Windows operating system. Supported versions are: 10 and 11, as well as the corresponding embedded
editions.

To build an application using Aurora Vision Library, Microsoft Visual Studio environment is required.
Supported versions are: 2015, 2017 and 2019.

Aurora Vision Library can be also used on Linux operating system with GCC compiler - for details consult
Using SDK on Linux article.

Running the InstallerRunning the Installer

The installation process is required to copy the files to the proper folders and to set the environment
variables used for building applications using Aurora Vision Library.

After the installation, a license for Aurora Vision Library product has to be loaded. It can be done with
the License Manager tool available in the Start Menu.

To verify that the installation has been successful and the license works correctly, one can try to load,
build and run example programs, which are available from the Start Menu.

SDK DirectoriesSDK Directories

Aurora Vision Library is distributed as a set of header files (.h), dynamic (.dll) and static (.lib)
libraries. The libraries (static and dynamic) are provided in versions for 32-bit and 64-bit system. The
header files are common for both versions.

The picture below shows the structure of the directories containing headers and libraries included in
Aurora Vision Library.

Library ArchitectureLibrary Architecture

Aurora Vision Library is split into four parts:

The directories (installed in the Program Files system folder) being a
part of Aurora Vision Library are shortly described below.

atl_visualizersatl_visualizers 3 a directory containing the visualizers for
Microsoft Visual Studio Debugger of Aurora Vision Library data types.

binbin 3 a directory containing dynamic linked library files (AVL.dll)
for 32|64-bit applications. The libraries are common for all
supported versions of Microsoft Visual Studio and for Debug|Release
configurations. All the functions of Aurora Vision Library are
included in the AVL.dll file.

DocumentationDocumentation 3 a directory containing the documentation of Aurora
Vision Library, including this document.

includeinclude 3 a directory containing all header (.h) files for Aurora
Vision Library. Every source code file that uses Aurora Vision
Library needs the AVL.h header file (the main header file) to be
included.

liblib 3 a directory containing static (.lib) libraries (AVL.lib) for
32|64-bit applications. The AVL.lib file has to be statically-linked
into the program that uses Aurora Vision Library. It acts as an
intermediary between the usage of Aurora Vision Library functions and
the AVL.dll file. The programmer creating an application does not
need to bother about DLL entry points and functions exported from the
AVL.dll file. Aurora Vision Library is designed to be easy to use, so
one only needs to link the AVL.lib file and can use all the functions
from the AVL.dll just as easy as local functions.

toolstools 3 a directory containing the License Manager tool helping the
user to load the license for Aurora Vision Library to the developer's
computer.

ExamplesExamples 3 a directory located in the Public Documents system folder
(e.g. C:\Users\Public\Documents\Aurora Vision Library 5.6\Examples on
Windows Vista/7) containing simple example solutions using Aurora
Vision Library. The examples are a good way of learning, how to use
Aurora Vision Library. They can be used as a base for more
complicated programs as well. The shortcut to the Examples directory
can be found in the Start Menu after the installation of Aurora
Vision Library.

https://docs.adaptive-vision.com/5.6/avl/getting_started/LibraryOnLinux.html

1. Aurora Vision Library - contains all functions for working with images.

2. Standard Library - contains all auxiliary functions like: file operations, XML editing or mathematical
operations.

3. GenICam Library - contains all GenICam and GigEVision functions.

4. Third Party Library - contains functions of third-party hardware producers.

The usage of the library is possible only when including one of the following header files:

AVL.h

STD.h

Genicam.h

ThirdPartySdk.h

Environment and PathsEnvironment and Paths

Aurora Vision Library uses the environment variable named AVL_PATH5_6 (5_6 stands for the 5.6 version) in
the building process. The variable points the directory with the headers and libraries needed in the
compile time (.h files and AVL.lib) and in the run time (AVL.dll). Its value is typically set to
C:\Program Files (x86)\Aurora Vision\Aurora Vision Library 5.6, but it can differ in other systems.

The projects using Aurora Vision Library should use the value of AVL_PATH5_6 to resolve the locations of
the header files and statically-linked AVL.lib file. Using an environment variable containing path makes
the application source code more portable between computers. The AVL_PATH5_6 path is typically used in the
project settings of the compiler (Configuration Properties | C/C++ | General | Additional Include
Directories) to find the header files, settings of the linker (Configuration Properties | Linker | General
| Additional Library Directories) to find the proper version of the AVL.lib and in the configuration of
Post-Build Event (Configuration Properties | Build Events | Post-Build Event | Command Line) to copy the
proper version of the AVL.dll file to the output directory of the project. All the settings can be viewed
in the simple example applications distributed with Aurora Vision Library.

Project ConfigurationProject Configuration

General InformationGeneral Information

Aurora Vision Library is designed to be used as a part of C++ projects developed with Microsoft Visual
Studio in versions 2015-2019.

Creating a New ProjectCreating a New Project

Microsoft Visual Studio 2015, 2017 and 2019Microsoft Visual Studio 2015, 2017 and 2019

Aurora Vision Library is provided with a project template. To create a new project using Aurora Vision
Library, start Microsoft Visual Studio and choose the File | New | Project... command. The template called
AVL 5.6 Project is available in the tab Installed | Templates | Other Languages | Visual C++.

Required Project SettingsRequired Project Settings

All projects that use Aurora Vision Library need some specific values of the compiler and linker settings.
If you want to use the Library in your existing project or you are manually configuring a new project,
please apply the settings listed below:

Configuration Properties | GeneralConfiguration Properties | General

Character SetCharacter Set should be set to Use Unicode Character Set.

Configuration Properties | C/C++Configuration Properties | C/C++

GeneralGeneral

Additional Include DirectoriesAdditional Include Directories should contain the $(AVL_PATH5_6)\include\ path.

Configuration Properties | LinkerConfiguration Properties | Linker

GeneralGeneral

Additional Library DirectoriesAdditional Library Directories should contain the proper path to directory containing the
AVL.lib file. The proper path is $(AVL_PATH5_6)\lib\$(PlatformName)\ .

InputInput

Additional DependenciesAdditional Dependencies should contain AVL.lib file.

Configuration Properties | Build EventsConfiguration Properties | Build Events

Post-Build EventPost-Build Event

Command LineCommand Line should contain copy "$(AVL_PATH5_6)\bin\$(PlatformName)\AVL.dll" "$(OutDir)"
call. This setting is not mandatory, but the application using Aurora Vision Library requires
an access to the AVL.dll file and this is the easiest way to fulfill this requirement.

Including HeadersIncluding Headers

Every source code file that uses Aurora Vision Library needs the #include <AVL.h> directive. A proper path
to the AVL.h file is set in the settings of the compiler (described above), so there is no need to use the
full path in the directive.

Distributing Aurora Vision Library with Your ApplicationDistributing Aurora Vision Library with Your Application

Once the application is ready, it is time for preparing a distribution package or an installer. There are
two requirements that needs to be fulfilled:

The final executable file of the application needs to have access to the proper version (used by Win32
or x64 configuration) of the AVL.dll file. Typically, the AVL.dll file should be placed in the same
directory as the executable.

The computer that the application will run on needs a valid license for the use of Aurora Vision
Library product. Licenses can be managed with the License Manager application, that is installed with
Aurora Vision Library Runtime package.

A license file (*.avkey) can be also manually copied to the end user's machine without installing
Aurora Vision Library Runtime. It must be placed in a subdirectory of the AppData system folder. The
typical location for the license file is C:\Users\%USERNAME%\AppData\Local\Aurora Vision\Licenses.
Remember that the license is valid per machine, so every computer that runs the application needs a
separate license file.

Alternatively to the (*.avkey) files we support USB Dongle licenses.

Using Library with CMakeUsing Library with CMake

Library ships with CMake configuration modules. It makes the project portable, and easy to compile for
Windows, linux or Android. The minimum CMake version supported is 3.10 (for example shipped with Ubuntu
bionic/18.04)

Quick StartQuick Start

A simple template for CMakeLists.txt is presented below:

cmake_minimum_required(VERSION 3.10)

project(example)

find_package(

 AVL

 # for a specific version, uncomment the line below

 #5.3

 CONFIG

 REQUIRED

)

copy binaries to build directory

copy_avl()

add_executable(

 # executable name

 example_exec

 # source files

 main.cpp

)

target_link_libraries(

 example_exec

 PUBLIC

 AVL

)

install user executable

install(TARGETS example_exec)

install ALL AVL libraries

install_avl()

One can also copy one of the CMake examples, and modify to your needs. For further cmake use refer to
online documentation. Be aware that ubuntu 18.04 is the baseline distribution, so minimal CMake version is
3.10

ReferenceReference

packagepackage

CMake package is provided for windows installer and linux archive. Both should be usable after
installation. Linux additionally ships with Android libraries. The library is only discoverable using
CONFIG mode, so it's sensible to restrict find_package to that mode.

find_package(

 AVL

 # for a specific version, uncomment the line below

 #5.3

 CONFIG

 REQUIRED

)

On Android to use system installed AVL it is necessary to add CMAKE_FIND_ROOT_PATH_BOTH argument:

find_package(AVL CONFIG REQUIRED CMAKE_FIND_ROOT_PATH_BOTH)

Possible packages:

AVL - full library

AVL_Lite - lite library

Weaver - deep learning inference library

https://cmake.org/documentation/

install_avlinstall_avl

Install all AVL libraries when executing make install or ninja install or building INSTALL project in
Visual Studio. It accepts a LIB argument to override default installation directory. It requires
find_package(AVL...) call first.

find_package(AVL CONFIG REQUIRED)

install_avl()

By default it installs to ${CMAKE_INSTALL_PREFIX}/bin on Windows and ${CMAKE_INSTALL_PREFIX}/lib on Linux.
When provided the LIB argument it installs to ${CMAKE_INSTALL_PREFIX}/${LIB_ARGUMENT}

install_avl(LIB "avl_directory")

Possible variants:

install_avl()

install_avl_lite()

install_weaver()

copy_avlcopy_avl

Copy all AVL libraries when compiling targets that depend on AVL to binary directory. By default it's
${CMAKE_BINARY_DIR} or ${CMAKE_BINARY_DIR}/$<CONFIG> on Windows. It requires find_package(AVL...) call
first.

find_package(AVL CONFIG REQUIRED)

copy_avl()

Possible variants:

copy_avl()

copy_avl_lite()

copy_weaver()

Using Library on LinuxUsing Library on Linux

RequirementsRequirements

Aurora Vision Library is designed to be used with GCC compiler on Linux x86_64 and embedded ARMv8-A
systems. Currently gcc in version 9.3.1 is supported, and corresponding toolchains for embedded linux:
arm-linux-gnueabihf-, aarch64-linux-gnu-. Custom build can be prepared upon the earlier contact with
Aurora Vision team. The Aurora Vision Library is distributed as .tar.gz or .tar.xz archive. The library is
compatible with Debian-like system, including - but not limited to - Ubuntu distributions.

Common prerequisitesCommon prerequisites

Properly set locale on target computer is important. Non-existing locale will cause bugs and bad behavior.
To list locale that exists on your computer use: locale -a, and currently set: locale. Remember that
running your application as daemon (e.g. from systemd) may set different locale, than the one in your user
terminal. Refer to your Linux distribution documentation.

To build example in simple manner, GNU Make tool and CMake is needed.

Ubuntu 20.04/Debian 11 or newer:

Runtime:

package libc6 g 2.31

package libudev1 g 245.4

Development:

package g++ version g 9.4.0

package make version g 4.2.1

package cmake version g 3.16.3

sudo apt-get install cmake make g++

Examples:

sudo apt-get install libgtk-3-dev libsdl2-dev qtbase5-dev

For UserFilter example, you will need avexecutor

Rocky Linux 9/Fedora 31 (36 for QT)/OpenSUSE 15.3 or newer:

Runtime:

package glibc g 2.30

package systemd g 243.9

Development:

package gcc-c++ version g 9.3.1

package make version g 4.2.1

package cmake version g 3.17.4

CentOS/Fedora: dnf install gcc-c++ make cmake

OpenSUSE: zypper install gcc-c++ make cmake

Examples:

CentOS/Fedora: dnf install SDL2-devel qt5-qtbase-devel gtk3-devel

OpenSUSE: zypper install libSDL2-devel libqt5-qtbase-devel gtk3-devel

Generic:

Runtime:

libraries libc.so.6, libpthread.so.0, libm.so.6, libdl.so.2, librt.so.1, libgcc_s.so.1 from
glibc version g 2.30 or compatible (i.e. musl libc)

library libudev.so.1 from systemd version g 243.9

Supported input devicesSupported input devices

Installation instructionsInstallation instructions

In unpacked directory call the install script. In example: sudo ./install This command will install the
library to a proper directory in opt. It will also make the library visible to CMake find_package command.

Compilation instructionsCompilation instructions

Directory structureDirectory structure

Unpacked directory consists of following entries:

examples/ - directory contains source files of example programs written with Aurora Vision Library

include/ - this directory contains library header files

lib/ - here the .so file with library is stored, along with any kits

bin/ - directory for additional binaries, like Licensing tool.

/README - instruction of library usage

/sha512sum - checksums for all files in archive, check with sha512sum --quiet -c sha512sum

/metadata.json - file containing information about the optimal target system, and library version

/install - installation script

/uninstall - uninstall script, will be copied to installation directory, where it can be safely used

CompilationCompilation

Using CMakeUsing CMake

CMake is the recommended way to compile on linux, see documentation Using Library with CMake

Using Makefile or your custom build systemUsing Makefile or your custom build system

For compiling with Aurora Vision Library please remember to:

add the include/ subdirectory to the compiler include directories: -I switch

add the lib/ subdirectory to the linker directories: -L switch

link with Aurora Vision Library: -lAVL

use -rpath in linker options, LD_LIBRARY_PATH or LD_PRELOAD of libAVL.so file.

link with dependencies: -lpthread -lrt -ldl

One can consult makefile in the examples/ directory to see how to compile and link with Aurora Vision
Library.

Known compilation bugsKnown compilation bugs

In case of the following linker errors: (or similar)

Vendor x86_64 armv8

ximea � �

Allied Vision Vimba � �

Basler Pylon � �

LMI Gocator � �

AXIS � �

GenicamGenTL � �

Hilscher � �

OPCUA � �

SerialPort � �

NET SynView � �

Z4Sight � �

eBUS � �

https://docs.adaptive-vision.com/5.6/avl/getting_started/CMake.html

/usr/bin/ld: warning: libiconv.so, needed by lib/libAVL.so, not found (try using -rpath or -rpath-link)

lib/libAVL.so: undefined reference to `libiconv'

lib/build/libAVL.so: undefined reference to `libiconv_close'

lib/build/libAVL.so: undefined reference to `libiconv_open'

It is a known gnu linker bug, affecting versions older than 2.28 (e.g. in Ubuntu 16.04).
To solve the problem you can:

Try a different linker (add for linking -fuse-ld=gold for gold or -fuse-ld=lld, consult your linux
distribution manual)

Link with the missing library (for example add -liconv)

Update the linker (binutils 2.28 or newer)

Licensing and distributionLicensing and distribution

LicensingLicensing

File based licenses are supported on all Linux platforms. Dongle licenses depend on CodeMeter runtime.
Currently Codemeter runtime is available for x86_64 and ARMV7-A. To develop and debug programs written
with Aurora Vision Library, Library license has to be present. To run compiled binaries linked with Aurora
Vision Library, LibraryRuntime license has to be present.

One can use license_manager from bin/ directory to list currently installed file or dongle licenses:
license_manager list
Red marked licenses are invalid, for example past the license date or installed license for the wrong
machine (bad ID)

File LicenseFile License

To obtain license:

In a terminal, on the target machine run license_manager id from bin/ directory

Copy the printed Computer ID

Use that Computer ID to get a .avkey file from User Area on www.adaptive-vision.com website.

Download the key to the target machine

Install the license by oneone of the following methods:

Run in terminal license_manager install downloaded_file.avkey (Recommended)

Copy the .avkey file next to executable, that is using Aurora Vision Library

Dongle LicenseDongle License

Installed CodeMeter Runtime is required, as well as proper license available on plugged in dongle.

Download runtime package from WIBU website, section "CodeMeter User Runtime for Linux".
"Driver Only" (lite) version recommended for headless (no desktop GUI) installations. ARMV7-A is available
under "CodeMeter User Additional Downloads" as "Raspberry PI" version

DistributionDistribution

To distribute program with Aurora Vision Library, one have to provide license (file or dongle - depending
on system used) and the libavl.so. To provide the .so file, one can install SDK on target machine, but
this will provide headers etc., which may be unwanted. In such case, the library file, with any used kits
should be copied to suitable system directory, or the program has to be compiled with -rpath and relative
path to the .so file. Third option is to provide a boot script, which will set LD_LIBRARY_PATH or
LD_PRELOAD with libavl.so location.

Program development - general adviseProgram development - general advise

The most convenient way to make programs with Aurora Vision Library for Linux is to develop vision
algorithm using Aurora Vision Studio on Windows and then generating C++ code. This code can be further
changed or interfaced with rest of the system and tested on Windows. Then, cross-compiler can be used to
prepare Linux build, which will be provided to target machine. It is easy to organize work this way,
because:

developing vision algorithm using plain C++ is hard, troublesome and error prone, but Aurora Vision
Studio makes it easy,

programs written with Aurora Vision Library on Windows can be easily debugged using Microsoft Visual
Studio thanks to provided debug visualizers and the Image Watch extensions to Microsoft Visual Studio,

cross compilation using virtualization solution, like Vagrant, is easy and fast, and does not force
developer to use two systems simultaneously.

Of course, the programs can be also developed on Linux machine directly. Then a dose of work should be put
into writing good Makefile. Debugging can be done by GDB, but we do not provide debug symbols for Aurora

https://www.wibu.com/support/user/downloads-user-software.html

Vision Library.

Runtime considerationsRuntime considerations

Some architectures might impose restrictions on libavl code. In this section we present pitfalls the user
should be aware of.

Homogeneous Multiprocessor/SMPHomogeneous Multiprocessor/SMP

There are many identical cores. One might have a problem when cores span across multiple physical CPUs,
frequent on servers. The CPU's don't share CPU cache, so when execution of thread from CPUx/COREa is moved
to CPUy/COREb, cache needs to be updated. It imposes time penalty. A workaround would be to pin threads to
specific cores, (set affinity) or limit execution of libavl to specific number of cores on one physical
CPU.

use taskset linux command to limit execution on specific cores

use OMP_PROC_BIND=TRUE environment variable to bind threads to cores they started on

Heterogeneous MultiprocessorHeterogeneous Multiprocessor

There are different kinds of processors the code runs on. Some examples are ARM big.LITTLE architecture,
(where the cores mainly differ in maximum speed), or Tegra TX2 (where the cores serve different purpose).
This kind of architecture might also suffer from Homogeneous Multiprocessor problems, but might suffer
from different set of problems. One have to consider the cores are designed for low power and high
performance, single threaded multithreaded optimized. Use the same solutions as in previous point, just
take into account what type of algorithm will be executed.

Tegra TX2Tegra TX2

This CPU is an example of Heterogeneous Multiprocessor architecture. It comprises of 6 cores: 2 Denver2 4
Cortex-A57. Denver2 core is designed for single thread performance, while Cortex-A57 for multithreaded.
One can use both, but with thread binding, so threads are executed on the cores they started on. Limiting
to one type of core might be beneficial when power consumption is a factor. Remember that thread binding
might bind your application to core you did not want to use. Core 0 is Cortex-A57, core 1 and 2: Denver2,
and cores 3-5: Cortex-A57. Core 0 is always active.

Using User Filters on LinuxUsing User Filters on Linux

Creating Studio projectCreating Studio project

First you should create Aurora Vision Studio project and add new User Filter library on Windows. Refer to
Creating User Filters Studio article for details.

Implement and build your User Filter. Then in Aurora Vision Studio add it to program and use it as needed.
Note that path to the User Filter should be relative to the project.

Building User Filter on LinuxBuilding User Filter on Linux

On Linux install avexecutor. Copy source code of your User Filter to Linux. To build it using gcc, you
will need to:

add the avexecutor's include/ subdirectory to the compiler include directories: -I switch

add the avexecutor's lib/x86_64-linux-gnu/ subdirectory to the linker directories: -L switch

link with Aurora Vision Library Lite and UserFilters: -lAVL_Lite -lUserFilters

signify we are building a shared library: -shared -fPIC

set output name to .so: -o user_filter_library.so

Loading User Filter library from Studio programLoading User Filter library from Studio program

Copy Studio project files to Linux. Put built .so User Filter library in directory relative to project
files. Make sure the file name of User Filter selected on Windows (e.g. user_filter_library.dll) matches
name of .so file. The file extension will be changed automatically by Console application.

Then the program can be started as usual: <path to Console application> <path to .avproj file>

Using AVL instead of AVL LiteUsing AVL instead of AVL Lite

User Filter can alternatively be built using full AVL library. The process described above will need to be
changed as follows:

point compiler also to include and lib directories of AVL

link with AVL instead of AVL_Lite: -lAVL

copy libAVL.so from AVL directory to avexecutor/lib/x86_64-linux-gnu/ directory

change #include to <AVL.h>

remember to modify Visual Studio solution on Windows in a similar manner

This article is valid for version 5.6.1

©2007-2025 Aurora Vision

https://docs.adaptive-vision.com/studio/extensibility/CreatingUserFilters.html
https://www.adaptive-vision.com/

	Aurora Vision Library 5.6
	Getting Started
	SDK Installation
	Requirements
	Running the Installer
	SDK Directories
	Library Architecture
	Environment and Paths
	Project Configuration
	General Information
	Creating a New Project
	Microsoft Visual Studio 2015, 2017 and 2019
	Required Project Settings
	Including Headers
	Distributing Aurora Vision Library with Your Application
	Using Library with CMake
	Quick Start
	Reference
	package
	install_avl
	copy_avl
	Using Library on Linux
	Requirements
	Common prerequisites
	Supported input devices
	Installation instructions
	Compilation instructions
	Directory structure
	Compilation
	Using CMake
	Using Makefile or your custom build system
	Known compilation bugs
	Licensing and distribution
	Licensing
	File License
	Dongle License
	Distribution
	Program development - general advise
	Runtime considerations
	Homogeneous Multiprocessor/SMP
	Heterogeneous Multiprocessor
	Tegra TX2
	Using User Filters on Linux
	Creating Studio project
	Building User Filter on Linux
	Loading User Filter library from Studio program
	Using AVL instead of AVL Lite

